organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinoacetyl)-1,2,5,6-tetrahydropyridine-3-carboxylate

G. Aridoss,^a S. Sundaramoorthy,^b D. Velmurugan,^b K. S. Park^a and Y. T. Jeong^a*

^aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and ^bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: ytjeong@pknu.ac.kr

Received 23 June 2010; accepted 5 July 2010

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.065; *wR* factor = 0.217; data-to-parameter ratio = 19.0.

In the title compound, $C_{26}H_{30}N_2O_4S$, the thiomorpholine ring adopts a chair conformation whereas the tetrahydropyridine ring is in a half-chair conformation. The dihedral angle between the two phenyl rings is 33.3 (2)°. A strong intramolecular $O-H\cdots O$ hydrogen bond generates an S(6) motif. In the crystal, molecules are linked by intermolecular C- $H\cdots O$ hydrogen bonds, generating a ribbon-like structure propagating along the *a* axis.

Related literature

For general background to the biological activity of tetrahydropyridine derivatives, see: Aridoss *et al.* (2008, 2010); Chow *et al.* (1968). For related structures, see: Subha Nandhini *et al.* (2003); Aridoss *et al.* (2009); Parkin *et al.* (2004). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

 $C_{26}H_{30}N_2O_4S$ $M_r = 466.58$ Monoclinic, $P2_1/n$ a = 10.9561 (6) Å b = 9.5665 (6) Åc = 22.9011 (12) Å

$\beta = 93.575 \ (3)^{\circ}$
$V = 2395.6 (2) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.957, T_{\rm max} = 0.967$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.217$ S = 1.045677 reflections 299 parameters $\mu = 0.17 \text{ mm}^{-1}$ T = 292 K $0.26 \times 0.23 \times 0.20 \text{ mm}$

21473 measured reflections 5677 independent reflections 3669 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

1 restraint H-atom parameters constrained $\Delta \rho_{max} = 0.75$ e Å⁻³ $\Delta \rho_{min} = -0.56$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1A \cdots O2$ $C2 - H2A \cdots O4^{i}$ $C10 - H10 \cdots O4^{ii}$	0.82 0.97 0.93	1.92 2.46 2.41	2.627 (3) 3.306 (3) 3.339 (4)	144 145 178

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

GA and YTJ are grateful for the support provided by the Corporate-affiliated Research Institute of Academic–Industrial–Institutional Cooperation Improvement Business No. S7080008110. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5116).

References

- Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548.
- Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242–2249.
- Aridoss, G., Gayathri, D., Park, K. S., Kim, J. T. & Jeong, Y. T. (2009). Acta Cryst. E65, o3180–o3181.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chow, Y. L., Colon, C. J. & Tam, J. N. S. (1968). Can. J. Chem. 46, 2821–2825. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219-227.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, 01672–01674.

Acta Cryst. (2010). E66, o1982 [doi:10.1107/S1600536810026413]

Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinoacetyl)-1,2,5,6-tetrahydropyridine-3carboxylate

G. Aridoss, S. Sundaramoorthy, D. Velmurugan, K. S. Park and Y. T. Jeong

Comment

The asymmetric unit of *N*-chloroacetyl-3-carboxyethyl-2,6-diphenyl-4-hydroxy- Δ^3 -tetrahydropyridine obtained from the chloroacetylation of 3-carboxyethyl-2,6-diphenylpiperidin-4-one contains two crystallographically independent molecules wherein the two phenyl groups are oriented axially to avoid the steric repulsion (A^{1,3} strain; Chow *et al.*, 1968) with coplanar –NCOCH₂ group besides adopting the non-chair conformation for the tetrahydropyridine ring (Aridoss *et al.*, 2008). However, it was confirmed by X-ray study that the two phenyl groups take up anti orientation with each other upon replacement of chlorine by morpholine system (Aridoss *et al.*, 2010). In order to study the orientation of phenyl groups and conformation of tetrahydropyridine ring system upon substitution of thiomorpholine instead of morpholine, the current study has been undertaken.

The sum of bond angles around atoms N1 (358.0 (2)°) and N2 (329.5 (2)°) of the tetrahydropyridine and the thiomorpholine rings in the molecule is in accordance with sp^2 and sp^3 hybridizations. The thiomorpholine ring adopts a chair conformation. The tetrahydropyridine ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiomorpholine/tetrahydropyridine ring are q2 = 0.021 (3)/0.355 (2) Å, q3 = 0.631 (3)/-0.295 (2) Å; QT = 0.632 (3)/0.461 (2) Å and $\theta = 1.8$ (3)/129.8 (3)°. The dihedral angle between the two phenyl ring is 33.4 (2)°. The thiomorpholine and tetrahydropyridine rings are connected by the ethanone. The ethyl acetate group shows an extended conformation [C18—O3—C19—C20 = 110.8 (6)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O1 acts as a donor to O2, generating an S(6) motif.

Atoms C2 and C10 act as donors to form hydrogen bonds with atom O4 as an aceptor. In the crystal structure, the molecules at (x,y,z) and (1 - x, 1 - y, -z), (2 - x, 1 - y, -z) are linked by C—H···O hydrogen bonds into a ribbon-like structure along the *a* axis; the ribbons contain $R_2^2(12)$ and $R_2^2(16)$ ring motifs.

Experimental

To a mixture of thiomorpholine (1 equiv.) and dry K_2CO_3 (2 equiv.) in benzene, *N*-chloroacetyl-3-carboxyethyl-2,6-diphenylpiperidin-4-one (1 equiv.) in benzene was added slowly and refluxed until completion (Aridoss *et al.*, 2010). Through a typical work up procedure and purification, pure title compound was achieved, which on further crystallization in ethanol gave diffraction quality crystals.

Refinement

H atoms were positioned geometrically (O–H = 0.82 Å and C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and 1.2 $U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The crystal packing of the molecules viewed down the b axis. For clarity, H atoms which are not involved in hydrogen bonding are omitted.

Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinoacetyl)-1,2,5,6-tetrahydropyridine- 3-carboxylate

Crystal data	
$C_{26}H_{30}N_2O_4S$	F(000) = 992
$M_r = 466.58$	$D_{\rm x} = 1.294 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1201 reflections
a = 10.9561 (6) Å	$\theta = 1.8 - 28.2^{\circ}$
b = 9.5665 (6) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 22.9011 (12) Å	T = 292 K
$\beta = 93.575 \ (3)^{\circ}$	Block, colourless
$V = 2395.6 (2) \text{ Å}^3$	$0.26 \times 0.23 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII area-detector diffractometer	5677 independent reflections
Radiation source: fine-focus sealed tube	3669 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ω and ϕ scans	$\theta_{\text{max}} = 28.2^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -14 \rightarrow 14$
$T_{\min} = 0.957, \ T_{\max} = 0.967$	$k = -11 \rightarrow 12$
21473 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.217$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.1095P)^2 + 1.0086P]$ where $P = (F_o^2 + 2F_c^2)/3$
5677 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
299 parameters	$\Delta\rho_{max} = 0.75 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4059 (2)	0.1850 (2)	-0.01465 (10)	0.0453 (5)
H1	0.4343	0.1666	0.0260	0.054*
C2	0.5190 (2)	0.2068 (3)	-0.04884 (11)	0.0513 (6)
H2A	0.5772	0.2644	-0.0260	0.062*
H2B	0.5573	0.1171	-0.0552	0.062*
C3	0.4893 (2)	0.2748 (3)	-0.10615 (10)	0.0490 (6)
C4	0.3873 (2)	0.3516 (3)	-0.11724 (10)	0.0478 (6)
C5	0.2932 (2)	0.3731 (2)	-0.07271 (10)	0.0444 (5)
Н5	0.2859	0.4745	-0.0678	0.053*
C6	0.1649 (2)	0.3208 (3)	-0.09247 (10)	0.0459 (5)
C7	0.1448 (2)	0.2216 (3)	-0.13558 (11)	0.0532 (6)
H7	0.2113	0.1804	-0.1522	0.064*
C8	0.0270 (3)	0.1820 (4)	-0.15461 (14)	0.0680 (8)
H8	0.0150	0.1150	-0.1838	0.082*
C9	-0.0707 (3)	0.2415 (4)	-0.13036 (17)	0.0796 (10)
H9	-0.1497	0.2155	-0.1432	0.095*
C10	-0.0529 (3)	0.3394 (4)	-0.08723 (18)	0.0805 (10)
H10	-0.1198	0.3792	-0.0705	0.097*
C11	0.0651 (3)	0.3799 (3)	-0.06812 (14)	0.0634 (7)
H11	0.0766	0.4470	-0.0389	0.076*
C12	0.3253 (2)	0.0626 (2)	-0.03482 (10)	0.0440 (5)
C13	0.3550 (2)	-0.0269 (3)	-0.07933 (11)	0.0544 (6)
H13	0.4231	-0.0085	-0.1004	0.065*
C14	0.2841 (3)	-0.1436 (3)	-0.09264 (15)	0.0699 (8)
H14	0.3051	-0.2032	-0.1225	0.084*

C15	0.1833 (3)	-0.1722 (3)	-0.06235 (16)	0.0722 (9)
H15	0.1365	-0.2514	-0.0713	0.087*
C16	0.1517 (3)	-0.0838 (3)	-0.01875 (15)	0.0698 (8)
H16	0.0827	-0.1023	0.0017	0.084*
C17	0.2222 (2)	0.0330 (3)	-0.00502 (12)	0.0563 (6)
H17	0.2000	0.0926	0.0246	0.068*
C18	0.3700 (2)	0.4250 (3)	-0.17259 (12)	0.0608 (7)
C19	0.2455 (3)	0.5885 (5)	-0.22699 (16)	0.0963 (13)
H19A	0.3047	0.5682	-0.2556	0.116*
H19B	0.2436	0.6888	-0.2209	0.116*
C20	0.1253 (5)	0.5390 (10)	-0.2479 (3)	0.210 (4)
H20A	0.1195	0.4404	-0.2409	0.315*
H20B	0.1132	0.5568	-0.2891	0.315*
H20C	0.0638	0.5871	-0.2276	0.315*
C21	0.3374 (2)	0.4067 (3)	0.03114 (11)	0.0508 (6)
C22	0.3935 (3)	0.3617 (3)	0.09078 (11)	0.0566 (6)
H22A	0.4770	0.3320	0.0863	0.068*
H22B	0.3963	0.4421	0.1167	0.068*
C23	0.2018 (3)	0.2891 (4)	0.12692 (14)	0.0677 (8)
H23A	0.1630	0.3190	0.0898	0.081*
H23B	0.2017	0.3677	0.1536	0.081*
C24	0.1283 (3)	0.1705 (5)	0.15118 (15)	0.0811 (10)
H24A	0.1292	0.0915	0.1246	0.097*
H24B	0.0440	0.2003	0.1531	0.097*
C25	0.3410 (3)	0.0918 (5)	0.20431 (15)	0.0880 (11)
H25A	0.3909	0.0721	0.2398	0.106*
H25B	0.3453	0.0113	0.1788	0.106*
C26	0.3931 (3)	0.2171 (4)	0.17450 (11)	0.0661 (8)
H26A	0.3891	0.2977	0.2000	0.079*
H26B	0.4785	0.1996	0.1682	0.079*
N1	0.33686 (18)	0.3177 (2)	-0.01508 (8)	0.0449 (5)
N2	0.32827 (18)	0.2491 (2)	0.11832 (8)	0.0508 (5)
01	0.57597 (16)	0.2550 (2)	-0.14448 (8)	0.0655 (5)
H1A	0.5564	0.2960	-0.1751	0.098*
O2	0.4311 (2)	0.4081 (3)	-0.21421 (9)	0.0931 (8)
03	0.27914 (19)	0.5182 (2)	-0.17266 (9)	0.0733 (6)
O4	0.2948 (2)	0.5239 (2)	0.02621 (9)	0.0703 (6)
S 1	0.18591 (8)	0.11578 (13)	0.22245 (4)	0.0894 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0494 (13)	0.0440 (13)	0.0416 (11)	0.0044 (10)	-0.0030 (9)	0.0038 (10)
C2	0.0460 (13)	0.0507 (14)	0.0563 (14)	0.0030 (11)	-0.0027 (11)	0.0048 (11)
C3	0.0409 (12)	0.0581 (15)	0.0481 (12)	-0.0064 (11)	0.0041 (10)	-0.0007 (11)
C4	0.0444 (12)	0.0556 (14)	0.0431 (12)	-0.0040 (11)	0.0004 (9)	0.0086 (11)
C5	0.0494 (13)	0.0414 (12)	0.0422 (11)	0.0047 (10)	0.0009 (9)	0.0064 (10)
C6	0.0476 (13)	0.0462 (13)	0.0440 (11)	0.0069 (10)	0.0036 (10)	0.0127 (10)

C7	0.0455 (13)	0.0633 (16)	0.0511 (13)	0.0012 (11)	0.0045 (10)	0.0004 (12)
C8	0.0566 (16)	0.079 (2)	0.0674 (17)	-0.0105 (15)	-0.0065 (13)	0.0080 (15)
C9	0.0430 (15)	0.096 (3)	0.098 (2)	-0.0052 (16)	-0.0040 (15)	0.027 (2)
C10	0.0493 (17)	0.090 (2)	0.104 (3)	0.0202 (16)	0.0206 (17)	0.014 (2)
C11	0.0561 (16)	0.0626 (17)	0.0726 (18)	0.0134 (13)	0.0131 (13)	0.0026 (14)
C12	0.0491 (13)	0.0402 (12)	0.0422 (11)	0.0059 (10)	-0.0014 (9)	0.0066 (10)
C13	0.0545 (14)	0.0551 (15)	0.0537 (13)	0.0040 (12)	0.0035 (11)	-0.0063 (12)
C14	0.0706 (19)	0.0600 (17)	0.0775 (19)	0.0073 (15)	-0.0081 (15)	-0.0180 (15)
C15	0.0669 (19)	0.0492 (16)	0.098 (2)	-0.0057 (14)	-0.0158 (17)	-0.0008 (16)
C16	0.0587 (17)	0.0653 (18)	0.086 (2)	-0.0083 (14)	0.0083 (15)	0.0139 (17)
C17	0.0602 (16)	0.0533 (15)	0.0562 (14)	0.0028 (12)	0.0096 (12)	0.0024 (12)
C18	0.0461 (14)	0.083 (2)	0.0528 (14)	-0.0113 (14)	-0.0002 (11)	0.0193 (14)
C19	0.090 (2)	0.122 (3)	0.074 (2)	-0.001 (2)	-0.0136 (18)	0.054 (2)
C20	0.161 (6)	0.285 (9)	0.170 (6)	-0.070 (6)	-0.097 (5)	0.132 (6)
C21	0.0545 (14)	0.0468 (14)	0.0512 (13)	-0.0051 (11)	0.0032 (11)	-0.0029 (11)
C22	0.0628 (16)	0.0607 (16)	0.0457 (13)	-0.0097 (13)	-0.0010 (11)	-0.0088 (12)
C23	0.0533 (15)	0.085 (2)	0.0649 (17)	0.0086 (15)	0.0013 (13)	-0.0027 (15)
C24	0.0572 (17)	0.115 (3)	0.0716 (19)	-0.0078 (18)	0.0067 (14)	0.003 (2)
C25	0.075 (2)	0.125 (3)	0.0650 (18)	0.014 (2)	0.0171 (16)	0.027 (2)
C26	0.0517 (15)	0.100 (2)	0.0464 (13)	0.0049 (15)	0.0036 (11)	0.0035 (14)
N1	0.0541 (11)	0.0394 (10)	0.0407 (9)	0.0032 (8)	-0.0006 (8)	0.0025 (8)
N2	0.0490 (11)	0.0620 (13)	0.0415 (10)	-0.0003 (10)	0.0031 (8)	-0.0024 (9)
01	0.0481 (10)	0.0906 (15)	0.0588 (11)	0.0004 (10)	0.0102 (8)	0.0043 (10)
02	0.0701 (14)	0.153 (2)	0.0575 (12)	0.0105 (15)	0.0187 (10)	0.0351 (14)
03	0.0670 (12)	0.0914 (15)	0.0606 (11)	0.0040 (11)	-0.0022 (9)	0.0363 (11)
O4	0.0921 (15)	0.0517 (12)	0.0667 (12)	0.0117 (10)	0.0025 (11)	-0.0090 (9)
S 1	0.0735 (6)	0.1382 (9)	0.0589 (5)	-0.0044 (5)	0.0220 (4)	0.0086 (5)

Geometric parameters (Å, °)

C1—N1	1.477 (3)	C16—C17	1.383 (4)
C1—C2	1.521 (3)	C16—H16	0.93
C1—C12	1.521 (3)	С17—Н17	0.93
C1—H1	0.98	C18—O2	1.209 (3)
C2—C3	1.483 (3)	C18—O3	1.336 (4)
C2—H2A	0.97	C19—O3	1.442 (3)
C2—H2B	0.97	C19—C20	1.452 (4)
C3—O1	1.346 (3)	C19—H19A	0.97
C3—C4	1.348 (3)	C19—H19B	0.97
C4—C18	1.451 (3)	C20—H20A	0.96
C4—C5	1.508 (3)	C20—H20B	0.96
C5—N1	1.474 (3)	C20—H20C	0.96
С5—С6	1.533 (3)	C21—O4	1.217 (3)
С5—Н5	0.98	C21—N1	1.359 (3)
С6—С7	1.377 (4)	C21—C22	1.524 (4)
C6—C11	1.379 (4)	C22—N2	1.458 (3)
С7—С8	1.389 (4)	C22—H22A	0.97
С7—Н7	0.93	C22—H22B	0.97
С8—С9	1.362 (5)	C23—N2	1.462 (3)

С8—Н8	0.93	C23—C24	1.517 (5)
C9—C10	1.366 (5)	С23—Н23А	0.97
С9—Н9	0.93	С23—Н23В	0.97
C10-C11	1.394 (5)	C24—S1	1.791 (4)
C10—H10	0.93	C24—H24A	0.97
C11—H11	0.93	C24—H24B	0.97
C12—C13	1.385 (3)	C25—C26	1.509 (5)
C12—C17	1.385 (4)	C25—S1	1.789 (3)
C13—C14	1.383 (4)	C25—H25A	0.97
С13—Н13	0.93	C25—H25B	0.97
C14—C15	1.368 (5)	C26—N2	1.463 (3)
C14—H14	0.93	C26—H26A	0.97
C15—C16	1.370 (5)	C26—H26B	0.97
C15—H15	0.93	O1—H1A	0.82
N1—C1—C2	108.19 (19)	C12—C17—H17	119.5
N1—C1—C12	111.88 (19)	O2—C18—O3	122.5 (3)
C2—C1—C12	115.2 (2)	O2—C18—C4	125.1 (3)
N1—C1—H1	107.1	O3—C18—C4	112.4 (2)
C2—C1—H1	107.1	O3—C19—C20	108.1 (3)
С12—С1—Н1	107.1	O3—C19—H19A	110.1
C3—C2—C1	111.97 (19)	С20—С19—Н19А	110.1
C3—C2—H2A	109.2	O3—C19—H19B	110.1
C1—C2—H2A	109.2	C20—C19—H19B	110.1
C3—C2—H2B	109.2	H19A—C19—H19B	108.4
C1—C2—H2B	109.2	C19—C20—H20A	109.5
H2A—C2—H2B	107.9	С19—С20—Н20В	109.5
O1—C3—C4	124.3 (2)	H20A—C20—H20B	109.5
O1—C3—C2	113.0 (2)	С19—С20—Н20С	109.5
C4—C3—C2	122.7 (2)	H20A-C20-H20C	109.5
C3—C4—C18	119.3 (2)	H20B-C20-H20C	109.5
C3—C4—C5	122.7 (2)	O4—C21—N1	121.5 (2)
C18—C4—C5	117.8 (2)	O4—C21—C22	118.3 (2)
N1C5C4	111.03 (18)	N1—C21—C22	120.2 (2)
N1—C5—C6	112.77 (18)	N2-C22-C21	114.6 (2)
C4—C5—C6	114.10 (19)	N2—C22—H22A	108.6
N1—C5—H5	106.1	C21—C22—H22A	108.6
С4—С5—Н5	106.1	N2—C22—H22B	108.6
С6—С5—Н5	106.1	C21—C22—H22B	108.6
C7—C6—C11	118.5 (2)	H22A—C22—H22B	107.6
C7—C6—C5	122.6 (2)	N2-C23-C24	112.5 (3)
C11—C6—C5	118.8 (2)	N2—C23—H23A	109.1
C6—C7—C8	121.1 (3)	C24—C23—H23A	109.1
С6—С7—Н7	119.4	N2—C23—H23B	109.1
С8—С7—Н7	119.4	С24—С23—Н23В	109.1
C9—C8—C7	119.8 (3)	H23A—C23—H23B	107.8
С9—С8—Н8	120.1	C23—C24—S1	112.8 (2)
С7—С8—Н8	120.1	C23—C24—H24A	109.0
C8—C9—C10	120.0 (3)	S1—C24—H24A	109.0
С8—С9—Н9	120.0	C23—C24—H24B	109.0

С10—С9—Н9	120.0	S1—C24—H24B	109.0
C9—C10—C11	120.4 (3)	H24A—C24—H24B	107.8
С9—С10—Н10	119.8	C26—C25—S1	113.3 (3)
C11—C10—H10	119.8	С26—С25—Н25А	108.9
C6—C11—C10	120.1 (3)	S1—C25—H25A	108.9
C6—C11—H11	119.9	С26—С25—Н25В	108.9
C10-C11-H11	119.9	S1—C25—H25B	108.9
C13—C12—C17	118.2 (2)	H25A—C25—H25B	107.7
C13—C12—C1	122.8 (2)	N2-C26-C25	112.8 (3)
C17—C12—C1	118.9 (2)	N2—C26—H26A	109.0
C14—C13—C12	120.4 (3)	С25—С26—Н26А	109.0
C14—C13—H13	119.8	N2—C26—H26B	109.0
C12—C13—H13	119.8	С25—С26—Н26В	109.0
C15-C14-C13	120.7 (3)	H26A—C26—H26B	107.8
C15—C14—H14	119.7	C21—N1—C5	117.2 (2)
C13—C14—H14	119.7	C21—N1—C1	123.8 (2)
C14—C15—C16	119.7 (3)	C5—N1—C1	116.92 (18)
C14—C15—H15	120.2	C22—N2—C23	111.0 (2)
C16—C15—H15	120.2	C22—N2—C26	108.1 (2)
C15—C16—C17	120.1 (3)	C23—N2—C26	110.4 (2)
C15—C16—H16	119.9	C3—O1—H1A	109.5
C17—C16—H16	119.9	C18—O3—C19	117.6 (3)
C16—C17—C12	120.9 (3)	C25—S1—C24	96.42 (16)
C16—C17—H17	119.5		
N1—C1—C2—C3	-48.5 (3)	C13—C12—C17—C16	1.0 (4)
C12—C1—C2—C3	77.5 (3)	C1—C12—C17—C16	-174.8 (2)
C1—C2—C3—O1	-159.7 (2)	C3—C4—C18—O2	11.3 (5)
C1—C2—C3—C4	22.2 (3)	C5—C4—C18—O2	-172.8 (3)
O1—C3—C4—C18	-3.2 (4)	C3—C4—C18—O3	-167.2 (2)
C2—C3—C4—C18	174.5 (2)	C5—C4—C18—O3	8.8 (3)
O1—C3—C4—C5	-179.0 (2)	O4—C21—C22—N2	114.2 (3)
C2—C3—C4—C5	-1.2 (4)	N1—C21—C22—N2	-66.5 (3)
C3—C4—C5—N1	8.2 (3)	N2-C23-C24-S1	63.1 (3)
C18—C4—C5—N1	-167.6 (2)	S1-C25-C26-N2	-62.4 (3)
C3—C4—C5—C6	-120.6 (3)	O4—C21—N1—C5	5.6 (4)
C18—C4—C5—C6	63.6 (3)	C22—C21—N1—C5	-173.6 (2)
N1—C5—C6—C7	-105.9 (3)	O4—C21—N1—C1	168.7 (2)
C4—C5—C6—C7	22.0 (3)	C22—C21—N1—C1	-10.6 (4)
N1-C5-C6-C11	77.1 (3)	C4—C5—N1—C21	125.2 (2)
C4—C5—C6—C11	-155.0 (2)	C6-C5-N1-C21	-105.3 (2)
C11—C6—C7—C8	0.4 (4)	C4—C5—N1—C1	-39.1 (3)
C5—C6—C7—C8	-176.5 (2)	C6-C5-N1-C1	90.4 (2)
C6—C7—C8—C9	-0.2 (4)	C2-C1-N1-C21	-103.0(2)
C7—C8—C9—C10	-0.3 (5)	C12—C1—N1—C21	129.1 (2)
C8—C9—C10—C11	0.6 (5)	C2—C1—N1—C5	60.1 (3)
C7—C6—C11—C10	-0.2 (4)	C12—C1—N1—C5	-67.8 (2)
C5—C6—C11—C10	176.9 (3)	C21—C22—N2—C23	-59.2 (3)
C9—C10—C11—C6	-0.3 (5)	C21—C22—N2—C26	179.6 (2)
N1—C1—C12—C13	126.8 (2)	C24—C23—N2—C22	175.6 (2)

C2-C1-C12-C13 N1-C1-C12-C17	2.8 (3) -57.6 (3)	C24—C23—N2—C26 C25—C26—N2—C22 C25—C26—N2—C22	-64.6(3) -174.2(2)
C17—C12—C13—C14 C1—C12—C13—C14	-1.1(4) 174.5(2)	C25—C26—N2—C25 O2—C18—O3—C19 C4—C18—O3—C19	64.2 (3) 7.2 (4) -174.3 (3)
C12—C13—C14—C15 C13—C14—C15—C16	0.3 (4) 0.6 (5)	C20—C19—O3—C18 C26—C25—S1—C24	110.8 (6) 51.6 (3)
C14—C15—C16—C17 C15—C16—C17—C12	-0.7 (5) -0.1 (4)	C23—C24—S1—C25	-51.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1—H1A…O2	0.82	1.92	2.627 (3)	144
C2—H2A···O4 ⁱ	0.97	2.46	3.306 (3)	145
C10—H10…O4 ⁱⁱ	0.93	2.41	3.339 (4)	178
$\mathbf{C}_{\text{commutative endows}}(\mathbf{i}) = \mathbf{i} + 1 = \mathbf{i} + 1 = \mathbf{i} + \mathbf{i}$	_			

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+1, -*z*.

Fig. 1

